PDF Generator by WESNet Designs
PDF Generator should be considered a work very much in process. I wrote it during the early winter of 2006 for a custom DotNetNuke module after investigating various commercial and open source solutions for web server based PDF generation and finding that most either were too expensive for my $0 budget or did not meet my requirements. The PDF Generator code was never intended for public release. However, after several requests from other developers in the ASP.NET and DotNetNuke community, I have made it available without cost and without any promise of support.
PDF Generator makes use of the open source C# .Net project iTextSharp which may be downloaded from SourceForge (http://sourceforge.net/projects/itextsharp/) . It is essentially a wrapper around the various classes of iTextSharp and means of defining the sections and content of a pdf report via an XML file. A PDFGrid section (with properties and datasource specification much like an ASP.NET DataGrid) is it's highlight. As time permits, I hope to develop other sections including one for images and one like an ASP.NET DataList that could include data binding expressions.
If you have questions, comments, bug reports and further suggestions for PDF Generator, please feel free to contact me at bill@wesnetdesigns.com. Due to other time commitments, I cannot provide detailed support.

Installation of PDF Generator

Unpack the file PDFGeneratorInstall.zip and place the two binaries iTextSharp.dll and PDFGenerator.dll in your \bin folder. Add a reference to PDFGenerator.dll to your project or DNN module's code.

Note that the iTextSharp.dll distributed with PDF Generator is a recompilation of the most recent version (3.1.4.0) available on 9/10/2006. Because the release version of iTextSharp.dll that can be downloaded from SourceForge (http://sourceforge.net/projects/itextsharp/) is a signed assembly, it cannot be called from an unsigned ASP.NET assembly in a medium trust environment. Should you desire to upgrade iTextSharp.dll as new versions are released, add the following line to Assembly.cs in the iTextSharp solution:
[assembly: System.Security.AllowPartiallyTrustedCallers]

and rebuild a modified release version.

In its most basic default mode, PDF Generator may be used in an ASP.NET web page to generate a report from an XML specification and immediately stream it via the HttpResponse in one line:

Dim Report1 As New WESNet.PDF.PDFGenerator("Report 1.xml")
Schema of XML Report Definition
Report layout is defined by the use of an XML Report Definition file. Five sample report definitions are included in PDFGeneratorSource.zip.

 In the below schema description, optional nodes or node attributes are enclosed in square brackets […], valid attribute values are separated by a vertical bar | with the default value shown in parenthesis:
<?xml version="1.0" encoding="utf-8"?>

<Document
[Processing="Automatic" (Default)|"ManualDataBind"|"ManualOutput"|"Manual]

[Destination = "File"|"HttpResponse" (Default)]

[OpenNewWindow="True" (Default)|"False"]

[OutputFilePath=". . .">]

[<DocumentHeader>

[<Author [Visible="True" (Default)|"False"]> . . . (Default is empty string)</Author>]

[<Subject [Visible = "True" (Default)|"False"]> . . . (Default is empty String)</Subject>]

[<Title [Visible = "True" (Default)|"False"]> . . . (Default is empty string)</Title>]

[<DateCreated [Visible="True" (Default)|"False"]]> . . . (Default is today)</DateCreated>]

</DocumentHeader>]

<Reports>

<Report
[PageSize="Letter" (Default)|"Legal"|"A4"]

[Orientation="Landscape"|"Portrait" (Default)]

[Margins=". . ." (Default is 0.5in on all sides)]

[PageColor=". . ." (Default is no color)]>

. . . Report Section Nodes . . .

</Report>

</Reports>

</Document>
Although once can specify multiple <Report> definitions under the <Reports> node, only the first report is recognized in the current version. Each <Report> node contains one or more section nodes.

The following attributes may be specified to control the report's presentation:

PageSize: May be "Letter" (default), "Legal" or "A4".

Orientation: May be "Landscape" or "Portrait" (default).

Margins: By default, a 0.5 inch margin is applied to all sides of the report. Other margins may be specified using quad notation for example:

Margins="0.5in 2.0in 1.0in 2.0" - Top, Right, Bottom and Left margins in inches

PageColor: By default, no background color is applied to the page. If desired, background color of the page may be specified by a known color name or using the #RRGGBB web color hexadecimal values

In the current version, valid section nodes are as follows:

Title Section
<Title [ID=". . ."]>

<Text [IgnoreWhiteSpace="True" (Default)|"False"]> . . . </Text>

[<Style . . . />]
</Title>
The Title section defines a text block that will be displayed as a Label section and sets reports Title property. Like all sections, it may optionally be given an ID attribute which may be used to allow access to this node via custom code to make modifications before final rendering. The Style child node (see Styles) defines the style (font, color, borders, etc. of the text). If the IgnoreWhiteSpace attribute of the Text node is set to false, white space contained in the inner text of the node will be rendered as is in the title string.
Label Section

<Label [ID=". . ."]>

<Text IgnoreWhiteSpace="True" (Default)|"False"] > . . . </Text>

[<Style . . . />]
</Label>
The Label section defines a text block that will be displayed. Like all sections, it may optionally be given an ID attribute which may be used to allow access to this node via custom code to make modifications before final rendering. The Style child node (see Styles) defines the style (font, color, borders, etc. of the text). If the IgnoreWhiteSpace attribute of the Text node is set to false, white space contained in the inner text of the node will be rendered as is in the string.

The following tokens may be included in the text and will be replaced by their appropriate values:

[Author], [Creator], [DateCreated], [Subject], [Title], [Time], [Today].
Separator Section

<Separator [ID=". . ."]>

[<Style . . . />]
</Label>
The Separator Section causes a horizontal line to be drawn. Due to limitations of iTextSharp or my understanding of it, only the following Style attributes are recognized: Width, Height, ForeColor, HorizontalAlign, SpacingAfter, SpacingBefore.

Header Section

<Header [ID=". . ."]>

<Text IgnoreWhiteSpace="True" (Default)|"False"] > . . . </Text>

[<Style . . . />]
</Header>
The Header Section defines a Label which will be displayed as a header on all pages of the report. Most of the style attributes of a Label may be specified. Label Tokens may also be included in the text and will be substituted with their actual values. An additional token [CurrentPage] can also be included to display the current page.
Footer Section

<Footer [ID=". . ."]>

<Text IgnoreWhiteSpace="True" (Default)|"False"] > . . . </Text>

[<Style . . . />]
</Footer>
The Header Section defines a Label which will be displayed as a header on all pages of the report. Most of the style attributes of a Label may be specified. Label Tokens may also be included in the text and will be substituted with their actual values. An additional token [CurrentPage] can also be included to display the current page.

PDFGrid Section
<PDFGrid
[ID = ". . ."]

[Width = " . . ."]

[EnablePaging = "True"|"False" (Default)]

[RecordsPerPage = " . . . " (Default is 10)]

[ShowHeader = "True" (Default)|"False"]
 [ShowFooter = "True"|"False" (Default)]

[ShowPager = "True" (Default)|"False"]

 [CellPadding = " . . . " (Default is 0pt)]

[CellSpacing = " . . . " (Default is 0pt)]

[GridLines = "Vertical|Horizontal|"None" (Default)|"Both"]

[AutoGenerateColumns = "True" (Default)|"False"]

[DataMember = " . . ."]

[DataKeyField = " . . ."]

[<DataSource>

<ConnectionString [Source = "AppSettings" (Default)|"String"]> . . . </ConnectionString>

<Command [CommandType = "StoredProcedure"|"TableDirect"|"Text" (Default)]> . . . </Command>

[<BusinessObject> . . . (class) , . . . (assembly) </BusinessObject>]

[<Parameters>

<Parameter Name = " . . ." [DataType = " . . . " (Default is String)] Value = " . . ." />

.

.

.

<Parameter Name = " . . ." [DataType = " . . . " (Default is String)] Value = " . . ." />

</Parameters>]

 </DataSource>]

[<Style . . . />]

[<HeaderStyle . . . />]

[<FooterStyle . . . />]

[<PagerStyle . . . />]

[<ItemStyle . . ./>]

[<AlternatingItemStyle . . . />]

[<Columns>

 <Column DataField=". . ." [HeaderText=". . ."] [FooterText=". . ."] [DataFormatString=" . . ."]

[<HeaderStyle . . . />]

[<FooterStyle . . . />]

[<ItemStyle . . ./>]

[<AlternatingItemStyle . . . />]

 </Column>

.

.

.

 <Column DataField=". . ." [HeaderText=". . ."] [FooterText=". . ."] [DataFormatString=" . . ."]

[<HeaderStyle . . . />]

[<FooterStyle . . . />]

[<ItemStyle . . ./>]

[<AlternatingItemStyle . . . />]

 </Column>

</Columns>]
</PDFGrid>

The PDFGrid Section defines a section whose properties may be specified using markup similar to that of the ASP.NET DataGrid web server control. Where such properties are not the same as those used in the DataGrid web server control the following comments apply . . .
ID Attribute: The ID attribute needs only be specified should the PDFGrid need to be referenced in code, particularly in the OnItemDataBound or OnItemCreated event handlers. The following example shows these events may be handled to combine two fields and to count records which are then displayed in the PDF Grid footer:
Private Sub cmdReport4_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) _

 Handles cmdReport4.Click

 ClearStatus()

 Try

 Dim Report4 As New WESNet.PDF.PDFGenerator("Report 4.xml")

 Dim UserGrid As WESNet.PDF.PDFGrid

 With Report4

 UserGrid = CType(.GetSection("UserGrid"), WESNet.PDF.PDFGrid)

 If UserGrid Is Nothing Then

 lblStatus.Text = "ERROR: Report section PDFGrid with ID of 'UserGrid' could not be located"

 Else

 AddHandler UserGrid.ItemDataBound, AddressOf UserGrid_OnItemDataBound

 AddHandler UserGrid.ItemCreated, AddressOf UserGrid_OnItemCreated

 RecordCounter = 0

 .DataBind()

 .Output()

 End If

 End With

 Catch ex As Exception

 lblStatus.Text = "ERROR: " & ex.Message

 End Try

 End Sub
Protected Sub UserGrid_OnItemDataBound(ByVal s As Object, ByVal e As WESNet.PDF.PDFItemEventArgs)

 If e.Item.ItemType = ListItemType.Item Or e.Item.ItemType = ListItemType.AlternatingItem Then

 Dim ui As UserInfo = CType(e.Item.DataItem, UserInfo)

 e.Item.Cells.Item(0).Text = ui.LastName & ", " & ui.FirstName

 RecordCounter += 1

 End If

 End Sub

 Protected Sub UserGrid_OnItemCreated(ByVal s As Object, ByVal e As WESNet.PDF.PDFItemEventArgs)

 If e.Item.ItemType = ListItemType.Footer Then

 Dim Columns As Integer = e.Item.Cells.Count

 For i As Integer = Columns - 1 To 1 Step -1

 e.Item.Cells.RemoveAt(i)

 Next

 e.Item.Cells.Item(0).ColumnSpan = Columns

 e.Item.Cells.Item(0).Text = "Users Processed: " & RecordCounter.ToString

 End If

 End Sub
Paging: When creating tables, iTextSharp keeps track of the position of each row on the page and by default will force a new page and automatically repeat the table's header row should the page length be exceeded. Unfortunately, this behavior often results in the last row of the table being split over two pages. The PDF Grid also can be manually paged by setting the attribute "EnablePaging" to true and specifying the number of records per page in the "RecordsPerPage" attribute. For this form of paging to work properly, the PDF Grid's datasource must implement the ICollection or IList interfaces (for example returning an ArrayList or generic list. Because a DataReader only implements IEnumerable it cannot be used as a datasource when manual paging is enabled. When defining the datasource in the XML report definition and manual paging is desired, a strongly typed business object class should be created and referenced in the <BusinessObject> node by both its class type and assembly.
DataSource: The PDF Grid's datasource may be either specified in code before manual databinding occurs or in the <DataSource> node of the XML report definition as follows:

When the Source attribute of the <ConnectionString> node is set to "String", a valid SQL connection string should be specified as the node's inner text. When the Source attribute is set to "AppSettings" (default), the inner text should contain the name of your web.config's <AppSettings> node which provides the connection string as its value.
The <Command> node should contain either the name of a stored procedure in the database (CommandType="StoredProcedure"), the name of a database table (CommandType="TableDirect") or the text of an SQL select query (CommandType="Text").

The SQL select query or stored procedure may make use of named parameters (for example @DateCreated). These may be supplied by parameter "Name", optional "DataType", and "Value" in one or more <Parameter> nodes.

Styles
Most sections (except the NewPage section) can include a <Style . . . /> node. Style nodes may include the following attribute key=value pairs:

BackColor

The BackColor attribute defines the background color of the section and may be set to any valid known color name or hexadecimal color value (such as #FF003C). The default value is System.Drawing.Color.Empty.

Border

The Border attribute defines the style, width, and color of the border around the section. It may be specified using familiar CSS values such as Border = "solid 2pt red" in which case the same border will be used for all four edges of the section. The border of individual edges may be specified by using the sub-attributes Border-Top, Border-Right, Border-Bottom and Border-Left.
Font

The Font attribute and its sub-attributes specify the font-family, font-size, and other font styles of the section's text. Font sub-attributes and their valid values include the following:

Font-Bold
= "True"|"False" (Default)

Font-Italic = "True"|False" (Default)

Font-Name = " . . . "

Font-Overline = "True"|False" (Default)

Font-Size = " . . ."

Font size is specified using the appropriate numeric value and unit, for example 12pt, 0.5 in
Font-Strikeout = "True"|False" (Default)

Font-Underline = "True"|False" (Default)

ForeColor

The ForeColor attribute defines the foreground color of the section and may be set to any valid known color name or hexadecimal color value (such as #FF003C). The default value is System.Drawing.Color.Black.

Height

The Height attribute defines the total height of the section. It may be specified as a numeric value followed by a unit specifier such as 8in or 18cm.

Width

The Width attribute defines the total width of the section. It may be specified as a numeric value followed by a unit specifier such as 8in or 18cm. The width of a PDFGrid may only be set as a percentage of the total width of the page, for example: Width="40%"
Padding

The Padding attribute defines the amount of white space that surrounds the section using common CSS notation such as Padding = "5pt" (all edges having the same padding) or Padding-Right = "72pt" or "Padding = "5pt 10pt 5pt 20pt" (top and bottom padding 5pt, right padding 10pt, left padding 20pt). Due to limitations in iTextSharp, padding specification is often unreliable.
HorizontalAlign

The HorizontalAlign attributes specifies the horizontal alignment of the section. Valid values include "Left", "Right", "Center", "Justify" and "NotSet"

Leading

The Leading attribute specifies the leading (space between lines) of text in the section. Values are specified as a numeric value followed by a unit specifier such as 2pt. Due to limitations of iTextSharp, Leading applied to table cells is unreliable.

SpacingAfter

The SpacingAfter attribute defines the amount of white space that follows the section. Values are specified as a numeric value followed by a unit specifier such as 2in.

Spacing Before

The SpacingBefore attribute defines the amount of white space that preceeds the section. Values are specified as a numeric value followed by a unit specifier such as 2in.

